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EXTENDING WARING'S CONJECTURE TO 471,600,000 

JEFFREY M. KUBINA AND MARVIN C. WUNDERLICH 

ABSTRACT. Two computer techniques are described that the authors used to 
confirm Waring's Conjecture to 471,600,000, thus extending R. M. Stemmler's 
result of 200,000 computed in 1964. M. C. Wunderlich increased the result to 
175,600,000 in August 1988, and in the following October, J. M. Kubina, using 
a method suggested by Jean-Marc Deshouillers, raised it to 471,600,000. 

In 1770 Edward Waring asserted in his Meditationes Algebraicae that every 
positive integer can be written as the sum of four squares, as the sum of nine 
nonnegative cubes, and as the sum of nineteen fourth powers. Later that year 
Lagrange proved the case for the sums of four squares. The function g(k) is 
usually defined as the smallest integer n such that every positive integer can 
be written as the sum of n kth powers of nonnegative integers. In 1772 Euler 
obtained a lower bound for g(k) by noting that if 

(1) 3k =q2 + r , with 0 < r < 2, 

then the number 
k k k k 

q2 1 =(q- 1).2+(2 - 1).1 

requires q - I + 2k = q + 2k _ 2 kth powers. Thus, with q defined in 
equation (1), 

g(k) > q + 2 .k 2 

In 1909 Hilbert proved that g(k) is finite for all k. In 1935 Dickson and Pillai 
independently proved virtually the same result, that for g* (k) = q + 2k _ 2 and 
k > 7, g(k),= g*(k), whenever 

(2) q+r<2k 

for q and r defined in equation (1). Here, for clarity, the authors will bend the 
interpretation of history and refer to the statement g(k) = g* (k) as Waring's 
conjecture. In 1909 Wieferich proved g(k) = g*(k) for k = 3, in 1964 Chen 
proved it for k = 5, and in 1940 Pillai proved it for k = 6. An excellent 
exposition of Waring's problem is given by Small [4]. 
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To test condition (2), for k > 2, let (bL(k)bL(k)-l .b)2 be the binary 

expansion of 3 k, where L(x) = Flog2(3x + 1)1 . The bits (bL(k)bL(k)-1 ... bk+1)2 
and (bkbk-1 ... b1)2 represent the binary expansion of q and r, respectively. 
When k > 2 it can be shown that k > L(k) -k+ 1. The largest carry that could 
result from the sum of the first k bits of q and r is one. Therefore, since q 
consists of L(k)-k bits, and r of k bits, q+r < 2 kif (bkbk-l ... bL(k)-k+1)2 

contains a zero bit. 
Inequality (2) was verified for 401 < k < 200,000 by R. M. Stemmler [5] in 

1964 on an IBM 7090. In August 1988 M. C. Wunderlich completed 240 hours 
of computing on the Connection Machine at the Supercomputing Research Cen- 
ter in Lanham, Maryland, which verified (2) for 7 < k < 175,600,000. Table 
1 displays the values of k which produce a new largest string of ones. Note 
that the longest string yet discovered occurs for k = 92,600,006 and consists of 
29 bits, far shorter than the approximately 38,432,000 bits required to violate 
condition (2). 

TABLE 1 

k One k One 
k bits bits 
5 1 8,093 13 
14 3 28,277 14 
46 4 49,304 17 
58 5 164,000 19 
105 6 835,999 21 
157 7 2,242,294 22 
455 8 10,406,357 23 

1,060 9 25,380,333 26 
1,256 10 92,600,006 29 
2.677 11 

The program to test condition (2) was implemented on the Connection Ma- 
chine, which is a computer that executes single instructions on multiple data. 
Its maximum configuration consists of 65,536 bit-manipulative processors, each 
having an available memory of 64,995 bits. A host computer broadcasts in- 
structions to all processors which are executed in parallel. A bit mask allows 
instructions to affect a selected set of processors. This Connection Machine 
was set to run at 7 megahertz, so that each 142 nanoseconds, 65,536 single 
bit operations are simultaneously executed. Low-level software exists, so that 
arithmetic operations can be performed on contiguous segments of bits in each 
of the 64K processors in parallel. In terms of raw power and speed, the Con- 
nection Machine performs about eight times as fast as a CRAY 2 if all the 64K 
processors are counted. The total memory available (about .43 x 1010 bits) 
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is somewhat smaller than the memory of the CRAY 2 but much larger than 
most other supercomputers. The very large memory, together with the fact that 
integer arithmetic can be performed at the hardware level, made this an ideal 
computer for this application. 

For this program, a word size R = 32 was chosen for the program, and 
the number 3k was stored in the 65536R bits that were partitioned over all 
the processors, with R bits per processor. The program computed 3k+1 by 
multiplying every R-bit word by three, using a parallel shift and add instruc- 
tion. Then, in parallel, the carry produced in each processor was added into the 
neighboring processor. This carry propagation was repeated until all the carries 
were zero. Next, the bits bk, bkl, ... were examined until a zero bit was 

found. This procedure continued until 3k comprised more than 65,536R bits, 
at which point R was incremented by 16 and the bits representing 3k were re- 
distributed throughout the processors. To permit the program to be interrupted, 
3k was stored on disk every two hours. The integrity of the number 3k was 
guaranteed by a residue check every 10,000 steps. This was done by computing 
3k modulo the primes 10,007 and 11,003 on the host computer, then comput- 
ing the value of the number in the Connection Machine modulo the primes, 
and comparing the results. With these primes a false positive would occur with 

8 a probability less than 10- . A failure did occur on average every 50 hours 
of computer time. When one occurred, the program restarted from the smaller 
number stored on disk. A failure never occurred twice for the same number. 
The program printed each value of k whose associated bit string exceeded 15 
ones, which may be useful for anyone who wishes to verify these results. 

At a July 1988 conference in Bowdoin College, where one of us (M.C.W.) 
was present, Deshouillers discussed the following speed-up that he described 
in [2]. John Selfridge had mentioned a similar method to the second author 
independently, and this was incorporated in Kubina's later October calculations 
which we now describe. First notice that the string of ones in the number below, 
indicated by the bar, is reduced by at most two bits with each multiplication of 
three: 

3?x0= (...011111111010...)2 

31XO = (...01111110111...)2 

32X0= (...0111110010...)2 

33XO = (.. .011101011... )2. 

This can be easily proven in general. Now suppose 3k and 3k+m are computed 
and 3k satisfies condition (2); an upper bound is placed on m below. If 3k+i 

failed the test for some 1 < i < m, then its binary expansion would contain 
a string of ones from k to L(k + i) - (k + i) + 1. The results above imply 
that the expansion of 3k+m would contain a string of ones from bit k to 
L(k + i) - (k + i) + 1 + 2(m - i) . For all possible i, the largest value of the 



818 J. M. KUBINA AND M. C. WUNDERLICH 

latter expression is L(k + 1) - (k + 1) + 1 + 2(m - 1), when i = 1. If m was 
small enough so that 

(3) k>L(k+ 1)-(k+ 1)+1+2(m- 1) 

and the bits k through L(k + 1) - (k + 1) + 1 + 2(m - 1) contain a zero, then 

each 3k+i would satisfy condition (2). It can be shown that if m < .20k, then 
inequality (3) holds. 

To test condition (2) using this technique, J. M. Kubina implemented on 
the Connection Machine a fast Fourier transform (FFT) integer multiplica- 
tion program. The Connection Machine available to the authors had no high- 
speed floating-point hardware. Therefore, a version of the Schdnhage-Strassen 
multiplication algorithm in Aho, Hopcroft, and Ullman [1], which uses inte- 
ger arithmetic, was programmed, rather than the version in Knuth [3], which 
uses floating-point arithmetic. A brief description of the program follows. Let 
x = (XN-1 XO)2 and Y = (YN-1 '..YO)2, with their binary representations, 

N 
be the integers to multiply, where N = l * 2c, for 1, c > 0 and x * y < 2 

Define Xi (x ~~~~~~~~~~~~~~2c- 
1 

n Define Xi = (x(i+l)/-l xi.1)2, Yi = (Y(i+l)l 1 Yi.l)2, X= (Xi)ijd, and 

Y = (Y)21 If Wr'i = '=OXj *Y_j for i = 0, 1, ...,2c1 and Wr= 
2c-1 , then 

2c-1 1 

(4) W =X . Y = Wrj i.2 
i=o 

Let (o denote the componentwise product of vectors over Zp, with each PS a 
prime, and define FFTp and IFFTp to return the FFT and inverse FFT of a 
vector over Zp . Then the convolution of X and Y, Wr, is calculated as 

Z IFFTp (FFTp (X) (o FFTp (Y)), 

Ws CRT(Z, PS, Ws_1, pOP1 ... Ps- 1) 

for s = 0, 1, ..,r, where POP . Pr > 2c 1 . (21 1 _ 1)2 and CRT calcu- 
lates the elements Ws j of Ws, whose existence is guaranteed by the Chinese 
Remainder Theorem, such that WS-, j = Wsj modpop, Ps_I and Zj = 

W j mod PS, for j = 0 .. , 2c 1 . The binary representation of the product 
s~~~~~~~~~~~~~~ is computed from equation (4) by recalculating the Wr j so that 0 < Wr j < 

21- 1. Using 16-bit primes p, the correctness of the product is checked by 
verifying if w mod p = ((x mod p) (y mod p)) mod p . 

The routine computed the sequence (vi)'01 , where vo = 3175,600000 and 

vi = 329'600I000v in one hour and 50 minutes; each multiplication took eight 
minutes 41 seconds. Both numbers were obtained from Wunderlich's previous 
calculations. The routine checked each multiplication with nine 16-bit primes, 
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and the residue check described above (near the end of paragraph five) was 
done on each vi with another set of nine 16-bit primes. The probability of an 

86 undetected error is less than 10- . Every check returned positive results in 
every program run. Also, the last number computed, A3471600,000 was checked 
with all primes of 16 bits or fewer, pushing the probability that it is incorrect to 

28,304 10- . The number of consecutive one bits beginning at the kth bit position 
are given in Table 2, along with the bits k through k - 24. Since the smallest 
number of consecutive ones beginning at the kith bit position for the test to fail 
is greater than 13,680,000 and the longest string of consecutive ones beginning 
at the kith position is three, Waring's conjecture is true up to 471,600,000. 

TABLE 2 

One bk ... bk -24 
1 ~~~~bits for i > 1 

0 175,600,000 
1 205,200,000 3 1110000110111000001101110 
2 234,800,000 0 0100001100000011100011001 
3 264,400,000 0 0000011100110111001000110 
4 294,000,000 1 1001000000001100110110100 
5 323,600,000 1 1000100011000001000010100 
6 353,200,000 1 1011001010010010010111101 
7 382,800,000 0 0100001010010011000011101 
8 412,400,000 0 0100011100100100101000111 
9 442,000,000 1 1010100000000100010011101 
10 471,600,000 0 0101001001001101011110001 
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